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Abstract. The post Gaussian effective potential in D = 3 dimensions and the Gaussian effective potential
in D = 2+ε are evaluated for the Ginzburg-Landau theory of superconductivity. It is shown that, the next
order correction to the Gaussian approximation of the Ginzburg-Landau parameter κ is significant, whereas
contribution from the two dimensionality is rather small. This strongly indicates that strong correlation
plays a more dominant role than the two dimensionality does in high Tc superconductivity.

PACS. 74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) –
11.15.Ex Spontaneous breaking of gauge symmetries – 74.20.De Phenomenological theories (two-fluid,
Ginzburg-Landau, etc.) – 11.15.Tk Other nonperturbative techniques

1 Introduction

The Ginzburg-Landau (GL) theory of superconductiv-
ity [1] was proposed long before the famous BCS micro-
scopic theory of superconductivity was discovered. A few
years after the appearance of the BCS theory, Gorkov de-
rived [2] the GL theory from the BCS theory. Amazingly,
the GL theory has played a significant role in understand-
ing superconductivity up to now. It is highly relevant for
the description of high-Tc superconductors, even though
the original BCS theory is inadequate to treat these ma-
terials. The success of the GL theory in the study of mod-
ern problems of superconductivity lies on its universal ef-
fective character in which the details of the microscopic
model are unimportant.

Even in the level of meanfield approximation (MFA),
the GL theory gives significant information such as pen-
etration depth (l) and coherence length (ξ) of the su-
perconducting samples. Many unconventional properties
of superconductivity connected with the break down of
the simple MFA has been studied both analytically [3]
and numerically using the GL theory [4]. Particularly, the
fluctuations of the gauge field were studied recently by
Camarda et al. [5] and Abreu et al. [6] in the Gaussian
approximation of the field theory. The effective mass
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parameters of the Gaussian effective potential (GEP),
Ω and ∆, were interpreted as inverses of the coherence
length ξ = 1/Ω and of the penetration depth � = 1/∆,
respectively.

In this note, we take one step further estimating cor-
rections to the Gaussian effective potential for the U(1)
scalar electrodynamics where it represents the standard
static GL effective model of superconductivity. Although
it was found that, in the covariant pure λφ4 theory in 3+1
dimensions, corrections to the GEP are not large [7], we do
not expect them to be negligible in three dimensions for
high Tc superconductivity, where the system is strongly
correlated.

Apart from the strong correlation , another important
factor, which one should consider for high Tc supercon-
ductivity, is the dimensionality of the system. It is well
known that, most of the high Tc superconducting materi-
als have layered structures, which strongly suggests two-
dimensional nature of high Tc superconductivity. In order
to test relative importance of the dimensionality contribu-
tion compared to the post Gaussian corrections, we shall
also study the case of fractal dimension, D = 2 + ε.

The paper is organized as follows: in Section 2 the
GL action is introduced and the post Gaussian approx-
imation is applied; in Section 3, the theoretical results
for D = 3 and D = 2 + ε will be compared to existing
high Tc experimental data. The results are summarised
in Section 4.
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2 Post Gaussian effective potential in D = 3
dimension

We start with the Hamiltonian of the GL model in
Euclidean D-dimensional space given by [8]

H′ =
1
Tc

∫
dDx

{
1
4
F 2

ij +
1
2

∣∣∣(∂i − ieµ(3−D)/2Ai

)
ψ

∣∣∣2

+
1
2
m2ψ2 + λµ(3−D)|ψ|4

}
, (1)

where ψ and A are the complex scalar and the static elec-
tromagnetic fields, respectively; m, λ and e are the in-
put parameters of the model1. We introduce natural units
employing ξ0 (coherence length at zero temperature) and
Tc as length and energy scale, respectively, through the
transformations:

m→ mξ−1
0 , µ→ µξ−1

0 , x→ xη0,

e2 → e2ξ−1
0 T−1

c , λ→ λξ−1
0 T−1

c ,

ψ → ψξ
(1−D/2)
0 T 1/2

c , Ai → Aiξ
(1−D/2)
0 T 1/2

c . (2)

Equation (1) is now rewritten as,

H′ =
∫
dDx

{
1
2
|∇ × A|2 +

1
2

∣∣∣(∂i − ieµ(3−D)/2Ai

)
ψ

∣∣∣2

+
1
2
m2ψ2 + λµ(3−D)|ψ|4

}
. (3)

In accordance with references [5,6], we apply transverse
unitary gauge and express the partition function as

Z =
∫

DφDAT exp
{
−

∫
dDxH +

∫
dDxjφ + (jAA)

}
(4)

where the Hamiltonian density is2

H =
1
2
(∇ × A)2 +

1
2
(∇φ)2 +

1
2
m2φ2 + λφ4 +

1
2
e2φ2A2

+
1
2ε

(∇A)2 . (5)

We have introduced a gauge fixing term, with the
limit ε → 0 being taken after the calculations are carried
out. In equation (5) A stands for the transverse gauge
field and ψ = φ exp(iγ) .

To obtain the free energy density, Veff = F/V (effective
potential), we introduce a shifted field φ→ φ+φ0 and split
the Hamiltonian into two parts:

H = H0 +Hint , (6)

1 µ is introduced to make λ and e dimensionless.
2 From now on, we denote λµ(3−D) and e2µ(3−D) as λ and e2,

respectively, for simplicity.

where H0 is the sum of two free field terms describing a
vector field A with mass ∆0 and a real scalar field φ with
mass Ω0:

H0 =
1
2
(∇ × A)2 +

1
2
�2 A2 +

1
2ε

(∇A)2

+
1
2
(∇φ)2 +

1
2
Ω2

0φ
2 . (7)

The interaction term then reads

Hint(φ,A) =
4∑

n=0

vnφ
n − 1

2
∆2

0A
2 +

1
2
e2A2(φ+ φ0)2 ,

(8)
where

v0 =
1
2
m2φ2

0 + λµ(3−D)φ4
0 , v1 = m2φ0 + 4λµ(3−D)φ3

0 ,

v2 =
1
2

(
m2 −Ω2

0

)
+ 6λµ(3−D)φ2

0 , v3 = 4λµ(3−D)φ0,

v4 = λµ(3−D) . (9)

Now performing explicit Gaussian integration in equa-
tion (4), one obtains

Z = exp
{
−

∫
dDxHint(δ/δj, δ/δjA)

}

×
∫

DφDA exp
{
−

∫
dDxH0 + jφ+ jAA)

}

=
[
detD−1

0

]− 1
2

[
detG−1

0

]− 1
2

× exp
{
−

∫
dDxHint(δ/δj, δ/δjA)

}

×exp{jD0j/2}exp{jAG0jA/2} , (10)

where in momentum space

D0(p) = 1/
(
p2 +Ω2

0

)
, G0(p) = 2/

(
p2 +∆2

0

)
. (11)

To calculate partition function in post Gaussian approxi-
mation, we use the method introduced in references [9,10]
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and introduce the so called primed derivatives:

(
δ

δj(x)

)′
≡ Â(1)

x =
δ

δj(x)
,

(
δ

δjA(x)

)′
≡ B̂(1)

x =
δ

δjA(x)
,

(
δ2

δj2(x)

)′
≡ Â(2)

x =
δ2

δj2(x)
−D0(x ,x) ,

(
δ2

δj2A(x)

)′
≡ B̂(2)

x =
δ2

δj2(x)
−G0(x ,x) ,

(
δ3

δj3(x)

)′
≡ Â(3)

x =
δ3

δj3(x)
− 3D0(x ,x)R(x) ,

(
δ3

δj3A(x)

)′
≡ B̂(3)

x =
δ3

δj3A(x)
− 3G0(x ,x)RA(x) ,

(
δ4

δj4(x)

)′
≡ Â(4)

x =
δ4

δj4(x)
− 6D0(x ,x)

δ2

δj2(x)

+ 3D2
0(x ,x) ,(

δ4

δj4A(x)

)′
≡ B̂(4)

x =
δ4

δj4A(x)
− 6G0(x ,x)

δ2

δj2A(x)

+ 3G2
0(x ,x) , (12)

where R(x) =
∫
dDyD0(x ,y)j(y) and RA(x) =∫

dDyG0(x ,y)jA(y), so that

Â
(n)
x exp{jD0j/2} = Rn(x)exp{jD0j/2} ,

B̂
(n)
x exp{jAG0jA/2} = Rn

A(x)exp{jAG0jA/2} .
(13)

Now it can be shown that [9,10], the Gaussian part of Z
can easily be isolated as follows:

Z = ZG ∆Z ,

ZG = exp
{
− I1(Ω) − 1

2
I1(∆) − v0 − v2I0(Ω)

+ 3v4I2
0 (Ω) +

(
∆2

0 + e2I0(Ω) − e2φ2
0

)
I0(∆)

}
,

∆Z = exp
{
− v2Â

(2) − v3Â
(3) − v4Â

(4)

− 1
2

(
e2φ2

0 −∆2
0

)
B̂(2) − e2φ0B̂

(2)Â(1)

− 1
2
e2B̂(2)Â(2)

}
exp{jDj/2}exp {jAGjA/2} ,

(14)

where

D(p) = 1/
(
p2 +Ω2

)
, G(p) = 2/

(
p2 +∆2

)
,

Ω2 = Ω2
0 + 12v4I0(Ω) + 2e2I0(∆),

∆2 = ∆2
0 + e2I0(Ω) . (15)

In the above, following integrals are introduced

I0(M) =
∫

dDp

(2π)D

1
(M2 + p2)

,

I1(M) =
1
2

∫
dDp

(2π)D
ln

(
M2 + p2

)
. (16)

From equations (14), (15) and (9), one gets the following
Gaussian effective potential:

VG = − lnZG = I1(Ω) +
1
2
I1(∆) + v0 + v2I0(Ω)

−3v4I2
0 (Ω) −

(
∆2

0 + e2I0(Ω) − e2φ2
0

)
I0(∆)

= I1(Ω) +
1
2
I1(∆) +

1
2
m2φ2

0 + λφ4
0

+
1
2
I0(Ω)

[
m2 −Ω2 + 6λI0(Ω) + 12λφ2

0

]

+I0(∆)
[
−∆2

0 + e2I0(Ω) + e2φ2
0

]
. (17)

Note that, the last equation is exactly the same as it is in
references [5,6]. The post Gaussian effective potential

Veff = VG +∆VG (18)

includes a correction part ∆VG:

∆VG = − ln∆Z = − ln
{

exp
[ − δŴ

]

×exp{jDj/2}exp {jAGjA/2}|j=0,jA=0

}

=− ln
{

1−δŴexp{jDj/2}exp {jAGjA/2}|j=0,jA=0

+
δ2Ŵ 2

2!
exp{jDj/2}exp {jAGjA/2}|j=0,jA=0

+ . . . )
}

≡ δ∆V
(1)
G (B) + δ2∆V

(2)
G (B) + . . . , (19)

Ŵ = v2Â
(2) + v3Â

(3) + v4Â
(4) +

1
2

(
e2φ2

0 −∆2
0

)
B̂(2)

+e2φ0B̂
(2) δ

δj
+

1
2
e2B̂(2)Â(2) .
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Here we have introduced an auxiliary expansion parame-
ter δ to be set equal to unity after calculations.

The first order term∆V
(1)
G (B) in this equation will not

contribute to the effective potential, i.e., ∆V (1)
G (B) = 0,

due to the relations (13). The next term of order δ2 gives
the first nontrivial contribution to the post Gaussian ef-
fective potential. The explicit calculations give

∆VG =
[
−1

2
e4 I2(∆) − 18 I2(Ω)λ2

]
φ0

4 +
{
− 3λ I2(Ω)

×
[
−Ω2 +m2 + 2 I0(∆) e2 + 12λ I0(Ω)

]

− e2 I2(∆)
[
−∆2 + e2 I0(Ω)

]
− 8λ2 I3(Ω,Ω)

− 2
3
e4 I3(∆, Ω)

}
φ0

2 − 1
8

I2(Ω)
[
−Ω2 +m2

+ 2 I0(∆) e2 + 12λ I0(Ω)
]2

− 1
2

I2(∆)
[
−∆2

+ e2 I0(Ω)
]2

− 1
12
e4 I4(∆, Ω) − 1

2
λ2 I4(Ω,Ω) ,

(20)

where following loop integrals were introduced,

I2(M) =
2

(2π)D

∫
dDk

(k2 +M2)2

I3(M1,M2) =
1

(2π)2D

×
∫

dDk dDp

(k2 +M2
1 ) (p2 +M2

1 ) ((k + p)2 +M2
2 )
,

I4(M1,M2) =
1

(2π)3D

∫
dDk dDp dDq

(k2 +M2
1 ) (p2 +M2

1 ) (q2 +M2
2 )

× 1
((k + p+ q)2 +M2

2 )
. (21)

For D = 3 − 2ε, these integrals were calculated in di-
mensional regularization in reference [11]. For complete-
ness explicit expressions are given in Appendix A. The
appropriate counter terms to cancel the divergences com-
ing from the integrals are also presented in Appendix A.

The parameters Ω and ∆ are determined by the prin-
ciple of minimal sensitivity (PMS):

∂Veff

∂Ω̄
= 576 ∆̄ π2 λ2 φ̄4

0

(
2 ∆̄ + Ω̄

)
+ 8πφ̄2

0

{
− 12λ e2 ∆̄ 3

+
[
− 72 π λ Ω̄ 2 +

( − 6λ e2 + 192λ2
)
Ω̄

+ 24 πm2 λ
]
∆̄ 2 + ∆̄

[
− 36 π λ Ω̄ 3 +

(
10 e4

+ 96λ2
)
Ω̄ 2 + 12 π Ω̄ λm2

]
+ Ω̄ 3 e4

}
+ 20 ∆̄ Ω̄ 5 π2 +

(
48 π λ ∆̄ + 40 ∆̄ 2 π2 − 2 e4

)
Ω̄ 4

− 4 ∆̄ Ω̄ 3

[
− 24 π λ ∆̄ − ∆̄ π e2 + 2 e4 ln2 + e4

− 15λ2 − 2 e4 ln
µ2(

∆̄ + Ω̄
)2 + 6 π2m2

− 24λ2 ln
µ2

Ω̄ 2
+ 96λ2 ln2 + e4 ln

µ2

∆̄ 2

]

− 8 ∆̄ 2Ω̄ 2

[
− ∆̄ π e2 + e4 ln

µ2

∆̄ 2
+ 6 π2m2

− 2 e4 ln
µ2(

∆̄ + Ω̄
)2 − 15λ2 + 2 e4 ln2

+ 96λ2 ln2 − 24λ2 ln
µ2

Ω̄ 2

]

+ ∆̄
(
2∆̄ + Ω̄

) (
∆̄ e2 − 2 πm2

)2 = 0; (22)

∂Veff

∂∆̄
= 16 Ω̄ π2 e4φ̄4

0

(
Ω̄ + 2 ∆̄

)
+ 8 e2πφ̄2

0

{( − 8 Ω̄ π + 12λ
)
∆̄ 3

+ 2 Ω̄ ∆̄ 2
( − 2 Ω̄ π + 4 e2 + 3λ

)
− e2 Ω̄ 2

(
Ω̄ + 6 ∆̄

)}
+ e4 Ω̄ 4

+ 2 ∆̄ Ω̄ 3 e2
(
2 π ∆̄ + 5 e2

)
+ 4 ∆̄ 2 Ω̄ 2

[
4 π2 ∆̄ 2 + 2 π e2 ∆̄ + 6 e4

+ 2 e4 ln
µ2(

∆̄ + Ω̄
)2 − 4 e4 ln2 − 3 e2 λ

]

+ 2∆̄ 2

[
16 π2 ∆̄ 3 + 7 e4 ∆̄ + 8 ∆̄ e4 ln

µ2(
∆̄ + Ω̄

)2

− 12 ∆̄ e2 λ− 16 ∆̄ e4 ln2 + 2 e2m2 π

]
Ω̄

+ 4 ∆̄ 3 e2
( − ∆̄ e2 + 2 πm2

)
= 0 , (23)
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where we denote optimal values of Ω and ∆ by Ω̄ and ∆̄ ,
respectively, and φ̄0 is a stationary point defined from the
equation:

∂Veff

∂φ0
=

{( − 4 π e4 + 64 π2 ∆̄ λ
)
Ω̄ − 144 π λ2 ∆̄

}
φ̄2

0

+
(
e4 − 36 π λ ∆̄

)
Ω̄ 2 + 2 Ω̄ ∆̄

[
− 24λ2 ln

µ2

Ω̄ 2

+48λ2 ln3 − 2 ∆̄ π e2 + e4 ln
µ2

∆̄ 2
− 2 e4 ln2m2

+8 π2 − 2 e4 ln
µ2

(2 ∆̄ + Ω̄ )2
− 6λ2

]

+6λ ∆̄
(
∆̄ e2 − 2 πm2

)
= 0 . (24)

Note that, in the Gaussian approximation, the gap equa-
tions (23) are reduced to simple forms:

∂VG

∂Ω̄
= Ω̄ 2 π − 6 Ω̄ λ− ∆̄ e2 + 2m2 π = 0 ,

∂VG

∂Ω̄
= 8 ∆̄ 2 π λ− e4 ∆̄ − 4Ω̄ e2 λ+ 2 e2m2 π = 0 . (25)

3 Comparison with experimental data
for D = 3 and D = 2 + ε

The solutions of the equation (23) are related to the exper-
imentally measured GL parameter κ as κ = �/ξ = Ω̄ /∆̄ .
We make an attempt to reproduce recent experimental
data on κ(T ) [12] for high-Tc cuprate superconductor
Tl2Ca2Ba2Cu3O10(T�− 2223).

For this purpose, we adopt usual linear T dependence
of parameterization of m and λ as:

m2 = m2
0(1 − τ) + τm2

c ,

λ = λ0(1 − τ) + τλc ,

τ = T/Tc , (26)

and calculate κ by solving nonlinear equations (23)
or (25). Due to the parametrization (26), the model has in
general five input parameters: m2

0, λ0, m2
c , λc and e. The

last parameter is related directly to the electron charge:
e2 = 16παkBTcξ0/� c, where α = 1/137, ξ0 is a coher-
ence length at T = 0, and Tc the critical temperature.
The experimental values for the cuprate T � − 2223 are
ξ0 = 1.36 nm and Tc = 121.5 K. The parameters m2

0

and λ0 are fitted to the experimental values of ξ and �
at zero temperature: ξ0 = 1.36 nm, �0 = 163 nm. In di-
mensionless units, (2), we have Ω̄ 0 = Ω̄ (τ = 0) = 1 and
∆̄ 0 = ∆̄ (τ = 0) = ξ0/l0 = 0.0083 which are used to calcu-
late m2

0 and λ0 from coupled equations (23) (or (25) in the
Gaussian case). The parametersm2

c and λc are fixed in the
similar way. Actually the quantum fluctuations shift m2

c

0,0 0,2 0,4 0,6 0,8 1,0
20

40

60

80

100

120

 Gaussian 3 Dim
 PostGaussian
 Experiment
 Gaussian 2+ε

κ

T/T
c

Fig. 1. The GL parameter, κ, in the Gaussian approximation
in D = 3 (the dotted line) and D = 2+ε (the dashed line) cases.
The solid line represents the Post Gaussian approximation for
D = 3 case.

Table 1. Input parameters of the GL model.

m2
0 λ0 m2

c λc

Gaussian −0.456 0.046 0.0013 0.002

Post. Gaussian −0.525 0.050 0.0017 0.008

from its zero value given by MFA. On the other hand,
the exact experimental values of m2

c and λc are unknown,
since the GL parameter at T = Tc is poorly determined.
For this reason, we used the experimental values of ξc
and �c at very close points to the critical temperature
taking τc = 0.98 which gives Ω̄ c = Ω̄ (τc) = 1/ξc = 0.128
and ∆̄ c = ∆̄ (τc) = 1/�c = 0.0043. Then solving the equa-
tions (23) (or (25) in the Gaussian case) with respect tomc

and λc, we fix the input parameters. Their values for the
Gaussian and the post Gaussian cases for D = 3 are sum-
marized in Table 1 3.

After having fixed the input parameters, the temper-
ature dependence of Ω̄ (τ), ∆̄ (τ) as well as the GL pa-
rameter κ = Ω̄ (τ)/∆̄ (τ) are established by solving the
gap equations (25) and (23) numerically for the Gaussian
and the post Gaussian approximations, respectively. The
results are presented in Figure 1, where solid curve cor-
responds to the post Gaussian and dotted one to the
Gaussian approximation. It is seen from the figure that
corrections to the Gaussian approximation are significant,
and in the right direction, although the discrepancy from
the experimental values is still substantial.

On the other hand, a better agreement with the exper-
iment has been obtained even on the level of the Gaussian

3 All parameters are given in dimensionless units. See equa-
tion (2).



306 The European Physical Journal B

0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T/T
c

 φ 2
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Fig. 2. The stationary point φ̄2
0 and the depth of the

post Gaussian effective potential at the stationary point vs.
temperature.

approximation by the authors of reference [5]. However,
they introduced a cut off parameter Λ as a characteristic
energy scale of the sample to make the divergent inte-
grals I0 and I1 finite. We believe that, the better agree-
ment is a result of introducing this rather arbitrary addi-
tional parameter. It should be noted that, in the present
approach, there is no such additional adjustable parame-
ter. Here we used dimensional regularization in which we
put µ = Ω̄ 0. It was found that the behavior of κ(τ) does
not depend on µ: Another value of µ, e.g. µ = 2Ω̄ 0 leads
to another set of input parameters {m2

0,mc, λ0, λ0}, but
to the same behavior for κ(τ).

Clearly, the solutions of nonlinear gap equations are
not unique. In numerical calculations we separated the
physical solutions by observing the sign of φ̄2

0 and that
of the effective potential at the stationary point: Veff(φ̄0).
The temperature dependence of these two quantities are
presented in Figure 2. It is seen that φ̄2

0 (solid line) is pos-
itive in the large range of τ and goes to zero when τ is
close to τ = 1. Similarly, the depth of the effective po-
tential at the stationary point, Veff(φ̄0), becomes shallow
when τ → 1 and vanishes at T = Tc.

All the above numerical calculations were made in
D = 3 dimension. On the other hand it is widely known
that, most of high Tc cuprates have layered structures with
2D CuO2 planes which play an essential role in the high Tc

superconductivity. Therefore, it is necessary to consider
the dimensional contribution in the calculation so that rel-
ative importance between the post Gaussian corrections
and the two-dimensional character can be assessed. For
this purpose, we consider the case of D = 2 + 2ε (ε �= 0)
in the Gaussian approximation. The effective potential is
given by the equations (16) and (17) where the integrals

are explicitly written as:

I0(M) = − 1
4π

{[
1
12
π2 +

1
2

ln2 µ
2

M2

]
ε− ln

µ2

M2
+

1
ε

}
,

I1(M) = −M
2

8π

{[
1
12
π2 +

1
2

ln2 µ2

M2
+ ln

µ2

M2
+ 1

]
ε

− 1 − ln
µ2

M2
+

1
ε

}
. (27)

Taking derivatives of VG and using (27) leads to the fol-
lowing gap equations:

∂VG

∂Ω
|(∂VG/∂φ0)=0 = 6λ+ e2 − ε

[
π Ω̄ 2 + 2 πm2

+ (e2 + 12λ) ln
µ2

Ω̄ 2
+ e2ln

µ2

∆̄ 2

]
+O(ε2) = 0 , (28)

∂VG

∂∆
|(∂VG/∂φ0)=0 = 4e2λ+ e4 − 2ε

[
4∆̄ 2πλ+ e2m2π

+e2
(
e2 + 2λ

)
ln
µ2

∆̄ 2

+2λe2 ln
µ2

Ω̄ 2

]
+O(ε2) = 0 . (29)

The parameters m2
0, λ0, m2

c and λc in equa-
tions (26–29) were adjusted to their experimental values
in the same way as in the previous case. As a result we
obtain:

m2
0 =

1.106− 22.827 ε
1.106 + 36.443 ε

, λ0 =
0.869 ε

1.106 + 36.443 ε
,

m2
c =

−511.839 ε4+15.368 ε3+0.708 ε2−0.00645 ε+0.000016
140.569 ε2 + 2982.92 ε3 + 1.9283 ε+ 14677.46 ε4

,

λc =
0.202 ε3 + 0.0042 ε2 − 0.00005 ε

1.405 ε+ 29.829 ε2 + 0.0192 + 146.77 ε3
. (30)

In Figures 3 and 4, we present m2 and λ vs. ε, respec-
tively, given by equations (26) and (30). One notes that
for small values of ε (0 < ε ≤ 0.048) m2 becomes positive.
Bearing in mind that, in the GL model the phase transi-
tion occurs where m2 changes sign (or more exactly the
superconductive phase holds only for m2 < 0), it shows
that, in the present approximation scheme, there is no
phase transition in D = 2 + 2ε dimension for very small
values of ε. This smallness of the ε value indicates relia-
bility of the present post Gaussian approximation. Note
that, λ remains positive on the whole range of ε (Fig. 4).

The GL parameter κ(τ) = Ω̄ (τ)/∆̄ (τ) given by equa-
tions (26–30) in D = 2 + 2ε case (ε = 0.1) is plotted in
Figure 1 (dotted line). We find that, surprisingly, the two
curves from the Gaussian approximation almost coincide,
thus indicating that the dimensionality contribution is not
significant as far as the GL parameter is concerned.
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Fig. 3. The parameter m2 of th GL model given by equa-
tions (26) and (30) for D = 2 + 2ε.
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Fig. 4. The same as in Figure 3 but for λ.

4 Summary

In the present article we have carried out calculations
on the Ginzburg-Landau effective potential beyond the
Gaussian approximation. The result is used to obtain the
Ginzburg-Landau parameter, κ, and compared with ex-
isting high Tc superconductivity data. It was shown that
the post Gaussian correction which is believed to orig-
inate from strong correlation is substantial. In order to
estimate the contribution from the two dimensionality of
high Tc superconducting materials, we have carried out
calculations for D = 2 + 2ε in the Gaussian approxima-
tion. The result shows that the dimensionality correction
to the three dimensional Gaussian result is rather small,
although there remains possibility that a post Gaussian
correction at D = 2 + 2ε is much larger than that at

D = 3, thus making the theory closer to experiment. This
remains as a future study.
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Appendix A

A.1 Explicit expression for divergent integrals

Here, we bring explicit expressions for the divergent inte-
grals defined as:

I0(M) = −M
4π

[
1 + ε

(
2 + ln

µ2

4M2

)
+O

(
ε2

) ]
,

I1(M) = −M3

36π

[
3 + ε

(
8 + 3 ln

µ2

4M2

)
+O(ε2)

]
,

I2(M) =
1

4πM

[
1 + ε ln

µ2

4M2
+O

(
ε2

) ]
, (A.1)

I3(M1,M2) =
1

64π2

{
2 ln

µ2

(2M1 +M2)2
+ 2

+
1
ε

+O(ε)
}
,

I4(M1,M2) = − 1
128π3

{
M1

[
2 ln

(
µ2

(M1 +M2)2

)
+ 8

+ln
µ2

M1
2 − 6 ln2 +

1
ε

+O(ε)
]

+M1 ↔ M2

}
.

In D = 3 dimension the integrals I3 and I4 are di-
vergent. Following counter terms were introduced to the
Hamiltonian [9,13,14]:

Hcont = Bφ2m2/2 + Cλφ4 +De2φ2A2

+ EA2∆2(1 − δ)/2 , (A.2)

where in the minimal subtraction (MS) scheme

B = B1δ +B2δ
2 + . . . , C = C1δ + C2δ

2 + . . . ,

D = D1δ +D2δ
2 + . . . , E = E1δ + E2δ

2 + . . . ,

B1 = 0, C1 = 0, D1 = 0, E1 = 0 ,

B2 =
3λ2

2π2ε
, C2 = 0, D2 = − e2

4πε
, E2 =

e4

16π2ε
.

(A.3)
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